If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-30q+10q^2=0
a = 10; b = -30; c = 0;
Δ = b2-4ac
Δ = -302-4·10·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-30}{2*10}=\frac{0}{20} =0 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+30}{2*10}=\frac{60}{20} =3 $
| 0=4(y-8) | | 0=y(y-7) | | 20=3(d+4)-16 | | -2u^2+3u+2=0 | | (4a-3)(-2a+9)=0 | | -2u^2+3u-2=0 | | 2u^2-3u+2=0 | | 0=t^2+6t+8 | | x3+3x-18=0 | | 22=2x-2 | | 1-9y/19-3y=5/18 | | 3.z-6=12 | | 3(x-1)/4=3(x+1)/6 | | -30w+w^2+200=0 | | 4(4x-1)-15x=2 | | 1.1=x-9.8 | | 52x+4x^2=69 | | 52x+4x=69 | | 7p+7=5p-3 | | x/6+x/4=7.5 | | 100x=9x | | 3y2+11y+-4=0 | | 6(t-4)=-6 | | 9(x-2)/6=6(x+1)/10 | | x+7-8x/3=17/6-5x/8x+7-8x/3=17/6-5x/8 | | (p-3)(p+2)=14 | | 5(4s+3)=115 | | x(1-12/x)2=11/25 | | 4x^2+12x=154 | | 12u=7u+15 | | 41/2*x=11/2 | | 3(x-1)/2=3(x+7)/10 |